

INTERNATIONAL SCIENTIFIC MEETING

Evaluating and monitoring analytical quality in the traceability era

MEASUREMENT UNCERTAINTY AS A KEY PERFORMANCE INDICATOR IN MEDICAL LABORATORIES

F. Borrillo Clinical Pathology Unit, ASST Fatebenefratelli-Sacco, Milan, Italy

DISCLAIMER

Use of trade names is for identification only and does not imply endorsement by ASST Fatebenfratelli Sacco. Certain commercial equipment or materials may be identified in this presentation to specify adequately the discussed concepts. Such identification does not imply recommendation or endorsement by ASST Fatebenfratelli Sacco, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Medicine is a science of uncertainty and an art of probability.

William Osler

Measurement Uncertainty (MU) definition

INTERNATIONAL VOCABULARY OF METROLOGY BASIC AND GENERAL CONCEPTS AND ASSOCIATED TERMS (VIM). 3RD ED. 2012

Parameter characterizing the dispersion of the quantity values being attributed to a measurand

In lay terms, MU represents the interval of possible values for a measurand for which a result was obtained

Measurement Uncertainty (MU) definition

"...In general use, the term 'uncertainty' relates to the concept of doubt... [however] uncertainty of measurement does not imply doubt about the validity of a measurement; on the contrary, <u>knowledge of the measurement uncertainty implies</u> <u>increased confidence in the validity of a</u> <u>measurement result</u>... "

Result = $x \pm \mu$ Value Measurement Uncertainty

If I estimate my uncertainty of measurement it is no longer an uncertainty: <u>it is now the probability</u> <u>limit within which the result will fall</u>

Ellison SLR, Williams A, eds. (2012). Eurachem Guide: Quantifying Uncertainty in Analytical Measurement, Eurachem, 3rd ed.

Why do we need MU?

The knowledge of MU contributes in producing standardized laboratory results

Laboratory users expect laboratory results to be equivalent, no matter where and how they are obtained, and interpreted in a consistent way

STANDARDIZATION

त कि कि कि कि कि कि

Unbroken traceability chain Definition of higher-order references to implement the appropriate trueness transfer process to commercial calibrators and patient results

Measurement Uncertainty with definition of allowable limits for clinical application of the measurements Post-marked surveillance Survey the suitability of IVDs for clinical use and of laboratory performance in using them through appropriate quality control programs

UNIVERSITY

aculty of Pharmac

Why do we need MU?

ISO 15189:2022 specifies the estimation of measurement uncertainty as a specific requirement for the accreditation of medical laboratories

5.5.1.4, requires that "...(medical laboratories)... shall determine measurement uncertainty for each measurement procedure in the examination phase used to report measured quantity values on patients' samples."

MU is a key quality indicator and it is useful for a number of reasons:

- for giving objective information about the quality of individual laboratory performance;
- for serving as a management tool for the medical laboratory and IVD manufacturers;
- for helping those manufacturers that produce superior products and measuring systems to demonstrate the superiority of those products;
- for identifying analytes that need analytical improvement for their clinical use and ask IVD manufacturers to work for improving the quality of assay performance;
- for abandoning assays with demonstrated insufficient quality.

How to deal with Measurement Uncertainty

How to calculate MU in medical laboratories

ISO/TS 20914:2019 MEDICAL LABORATORIES -- PRACTICAL GUIDANCE FOR THE ESTIMATION OF MEASUREMENT UNCERTAINTY

Practical approach to estimation of MU of quantities produced by measurement procedures intended to measure biological measurands, to be applied in medical laboratory

It estimates MU of laboratory results by using internal quality control data to derive the random components of uncertainty and commercial calibrator information.

> with the inspiring concept.... MU must be defined across the entire traceability chain!

How to calculate MU in medical laboratories

"Sources of MU with the 'top-down' approach"

How to calculate MU in medical laboratories

aculty of Pharmacy

ISO/TS 20914:2019 MEDICAL LABORATORIES -- PRACTICAL GUIDANCE FOR THE ESTIMATION OF MEASUREMENT UNCERTAINTY

Standardization and target for allowable MU

If these goals are not objectively defined and fulfilled, there is a risk of letting error gain the upper hand, thus obscuring the clinical information supplied by the result and possibly nullifying the theoretical advantages of metrological traceability and even causing negative effects on patients' outcome.

Standardization and target for allowable MU

RECOMMENDED LIMITS EXPRESSED AS PERCENTAGE OF TOTAL MU BUDGET GOAL

Braga F, Panteghini M. Clin Chem Lab Med. 2015 May;53(6):905-12.

APERTURE PROJECT

Sistema Socio Sanitario

ASST Fatebenefratelli Sacco

A project for establishing Analytical Performance Specifications for Measurement Uncertainty of common measurands based on Milan models

APERTURE PROJECT

Moving from theoretical principles to practice...

 50 measurands among the most requested tests in different analyte categories were selected
 Allocation of each measurand to one of the Milan models based on its biological and clinical characteristics
 Definition of APS for MU by reviewing available literature and selecting adequate information
 Verification for each analyte that MU fulfills the defined APS

Step 1

APERTURE PROJECT

50 measurands tested

APERTURE PROJECT

MODEL 1								
Outcome-based model								
Fasting plasma glucose								
Blood HbA _{1c}								
Blood total hemoglobin								
Serum total cholesterol								
Serum HDL cholesterol								
Serum triglycerides								
Serum cardiac troponin								
Urine albumin								
Serum total folate								
Serum 25-hydroxyvitamin D ₃								
Serum transferrin saturation								

For measurands belonging to the model 1, we searched peer-reviewed literature for outcome studies dealing with the main clinical use of the measurand and evaluating the impact of random analytical variability on clinical outcomes

Step 2

APERTURE PROJECT

MODEL 2

Biological Variation model

Serum sodium Serum potassium Serum chloride Serum total carbon dioxide Serum total calcium Serum inorganic phosphate Serum magnesium Serum creatinine Serum urea Serum urate Plasma lactate Serum total bilirubin Serum alkaline phosphatase Serum aspartate aminotransferase

Serum y-glutamyltransferase Serum lactate dehydrogenase Serum cholinesterase Serum total proteins Serum IgG Serum IgA Serum IgM Serum prostate-specific antigen Plasma homocysteine Red blood cells White blood cells Serum conjiugated bilirubin

Temporarily belonging to biological variation model

Serum albumin Plasma D-dimer Blood platelets Serum alanine aminotransferase Serum creatine kinase Serum pancreatic lipase Serum pancreatic amylase

For these measurands, no outcome-based data in literature were retrieved. Therefore, considering their physiological homeostatic control, to derive APS we temporarily allocated those measurands to the biological variation model.

For measurands belonging to the model 2, we retrieved BV publications in compliance to the 14 BV data critical appraisal checklist quality items (BIVAC-QI). From these publications, we derived CVI estimates needed to calculate APS for MU Step 2

APERTURE PROJECT

MODEL 3

State of the art model

Serum C-reactive protein Serum intact human chorionic gonadotropin To obtain the highest level of achievable analytical performance for measurands belonging to the model 3, we compared average u_{result} of widely used measuring systems and selected the best performance as APS for MU.

Temporarily belonging to MODEL 3 State of the art model

Serum thyroid stimulating hormone Urine total protein

Serum ethanol

Because outcome-based data are lacking we temporarily allocated those measurands to to the state-of-the-art .

APERTURE PROJECT

MODEL 1&2

Serum digoxin

Drugs need a specific approach when deriving APS, based on fundamental pharmacokinetic theory and average elimination half-life of the drug. Although the concentration of drugs does not fluctuate randomly around a homeostatic set point, this approach has a relationship with biological knowledge. On the other hand, TDM is linked to the patient outcome in defining the levels of drug which are potentially toxic or when the treatment can be ineffective. Accordingly, a hybrid model between the models 1 and 2 was proposed for drugs. Step 3

APERTURE PROJECT

Measurand	U _{result}	APS, %	u _{cal} A	PS, % ^a	u _{ref} APS, % ^b		
	Desirable	Minimum	Desirable	Minimum	Desirable	Minimum	
Outcome-based model							
Fasting plasma glucose	2.00	3.00	1.00	1.50	0.67	1.00	
Blood HbA _{1c}	3.00	3.70	1.50	1.85	1.00	1.23	
Blood total hemoglobin	5.60	8.50	2.80	4.25	1.87	2.83	
Serum total cholesterol	3.00	7.00	1.50	3.50	1.00	2.33	
Serum HDL cholesterol	2.90	5.60	1.45	2.80	0.97	1.87	
Serum triglycerides	6.10	12.4	3.05	6.20	2.03	4.13	
Serum cardiac troponin	9.40	13.0	4.70	6.50	3.13	4.33	
Urine albumin	9.00	17.0	4.50	8.50	3.00	5.67	
Serum total folate	8.00	12.0	4.00	6.00	2.67	4.00	
Serum 25-hydroxyvitamin D ₃	10.0	15.0	5.00	7.50	3.33	5.00	
Serum transferrin saturation	10.0	15.0	5.00	7.50	3.33	5.00	
Temporarily belonging to biological variation	nodel ^c		1.1.1.1.1.1.1.1				
Serum albumin	1.25	1.88	0.63	0.94	0.42	0.63	
Plasma D-dimer	10.6	15.9	5.30	7.95	3.53	5.30	
Blood platelets	4.85	7.28	2.43	3.64	1.62	2.43	
Serum alanine aminotransferase	4.65	6.98	2.33	3.49	1.55	2.33	
Serum creatine kinase	7.25	10.9	3.63	5.45	2.42	3.63	
Serum pancreatic lipase	3.85	5.78	1.93	2.89	1.28	1.93	
Serum pancreatic amylase	3.15	4.73	1.58	2.37	1.05	1.58	

Biological variation model						
Serum sodium	0.27	0.40	0.14	0.20	0.09	0.13
Serum potassium	1.96	2.94	0.98	1.47	0.65	0.98
Serum chloride	0.49	0.74	0.25	0.37	0.16	0.25
Serum total carbon dioxide	2.10	3.15	1.05	1.58	0.70	1.05
Serum total calcium	0.91	1.36	0.46	0.68	0.30	0.45
Serum inorganic phosphate	3.84	5.75	1.92	2.88	1.28	1.92
Serum magnesium	1.44	2.16	0.72	1.08	0.48	0.72
Serum creatinine	2.20	3.30	1.10	1.65	0.73	1.10
Serum urea	7.05	10.6	3.53	5.30	2.35	3.53
Serum urate	4.16	6.24	2.08	3.12	1.39	2.08
Plasma lactate	13.6	20.4	6.80	10.2	4.53	6.80
Serum total bilirubin	10.5	15.7	5.25	7.85	3.50	5.23
Serum alkaline phosphatase	2.65	3.98	1.33	1.99	0.88	1.33
Serum aspartate aminotransferase	4.75	7.13	2.38	3.57	1.58	2.38
Serum y-glutamyltransferase	4.45	6.68	2.23	3.34	1.48	2.23
Serum lactate dehydrogenase	2.60	3.90	1.30	1.95	0.87	1.30
Serum cholinesterase	2.10	3.15	1.05	1.58	0.70	1.05
Serum total proteins	1.30	1.95	0.65	0.98	0.43	0.65
Serum IgG	2.20	3.30	1.10	1.65	0.73	1.10
Serum IgA	2.50	3.75	1.25	1.88	0.83	1.25
Serum IgM	2.95	4.43	1.48	2.22	0.98	1.48
Serum prostate-specific antigen	3.40	5.10	1.70	2.55	1.13	1.70
Plasma homocysteine	3.52	5.27	1.76	2.64	1.17	1.76
Red blood cells	1.55	2.33	0.78	1.17	0.52	0.78
White blood cells	5.65	8.48	2.83	4.24	1.88	2.83
Serum conjiugated bilirubin	10.5	15.7	5.25	7.85	3.50	5.23
State-of-the-art model						
Serum C-reactive protein	3.76	5.64	1.88	2.82	1.25	1.88
Serum intact human chorionic gonadotropin	4.55	6.83	2.28	3.42	1.52	2.28

Temporarily belonging to state-of-the-art model						
Serum ethanol	3.11	4.67	1.56	2.33	1.03	1.55
Serum thyroid stimulating hormone	2.89	4.34	1.45	2.17	0.96	1.45
Urine total protein	4.97	7.46	2.49	3.73	1.66	2.49
Model 1&2 ^e						
Serum digoxin	6.00	9.00	3.00	4.50	2.00	3.00

"How many measurands can achieve the recommended MAU and can the available IVD-MDs hit these targets?"

50 measurands were selected and their u_{result} were estimated in a medical laboratory using commercial platforms as described in ISO/TS 20914:2019, by employing internal quality control data to derive u_{Rw} and u_{cal} information provided by the manufacturers

APERTURE PROJECT Step 4 APERTURE ^uresult APS The results showed that the great majority of evaluated tests (90%) fulfilled at least the minimum MAU HITTING DESIRABLE MAU 30 measurands HITTING MINIMUM MAU 15 measurands Serum sodium Serum chloride UNACCEPTABLE MU Serum total carbon dioxide 5 measurands

- Serum albumin
- Plasma homocysteine

REFERENCE PROVIDER contribution to the MU budget (u_{ref}**)**

REFERENCE PROVIDER contribution to the MU budget (u_{ref}**)**

SERUM CREATININE

Allowable limit for the standard MU of creatinine reference materials <33% of the goal

Access July 2019

Secondary RM/RMP	Traceability of assigned values	Nominal value, µmol/L	Combined standard uncertainty, %ª	Commutability information	
JRC BCR-573 (lyophilized	By ID/GC/MS and HPLC ^b calibrated	68.7	1.02	Not available	
human serum)	with the NIST SRM 914a				
JRC BCR-574 (lyophilized	By ID/GC/MS + HPLC ^b calibrated	105.0	0.62	Not available	
human serum)	with the NIST SRM 914a				
JRC BCR-575 (lyophilized	By ID/GC/MS + HPLC ^b calibrated	404.1	0.88	Not available	
human serum)	with the NIST SRM 914a				
LGC ERM-DA250a	By ID/LC/MS calibrated with the	358.0	5.87	Not available	
(frozen human serum)	NIST SRM 914				
LGC ERM-DA251a	By ID/LC/MS calibrated with the	197.0	5.58	Not available	
(frozen human serum)	NIST SRM 914				
LGC ERM-DA252a	By ID/LC/MS calibrated with the	27.5	15.6	Not available	
(frozen human serum)	NIST SRM 914				
LGC ERM-DA253a	By ID/LC/MS calibrated with the	449.0	3.56	Not available	
(frozen human serum)	NIST SRM 914				
LNE CRM Bio 101a level	By ID/GC/MS calibrated with the	53.04	1.09	Available	
1 (frozen human serum)	NIST SRM 914a				
LNE CRM Bio 101a level	By ID/GC/MS calibrated with the	550.54	0.56	Available	
2 (frozen human serum)	NIST SRM 914a				
CENAM DMR-263a	By ID/LC/MS calibrated with the	66.4	2.18	Not available	
(frozen human serum)	NIST SRM 914a				
ID/GC/MS	By calibration with high purity	151.9°	0.49°	By definition	
	crystalline creatinine	352.9°	0.50°		
ID/LC/MS	By calibration with high purity	152.1 ^d	0.82 ^d	By definition	
	crystalline creatinine	350.5 ^d	0.40 ^d		
ID/SERS	By calibration with high purity	345.7*	1.23°	By definition	
	crystalline creatinine	492.0°	2.24°		

UNIVERSITY

Faculty of Pharmaco

When different options are available in making a choice, IVD manufacturers should consider the suitability of higher-order references in terms of MU by selecting ones with less impact on the total MU budget.

Panteghini M, Braga F. Implementation of metrological traceability in laboratory medicine: where we are and what is missing. Clin Chem Lab Med. 2020 Jul 28;58(8):1200-1204.

REFERENCE PROVIDER contribution to the MU budget (u_{ref}**)**

"By replacing flame emission spectrophotometry with ion chromatography in the Na valueassigning process of Abbott calibrators, u_{result} on Alinity measuring system could be improved from about 0.80% to 0.55%."

Pasqualetti S, Chibireva M, Borrillo F, Braga F, Panteghini M. Improving measurement uncertainty of plasm electrolytes: a complex but not impossible task. Clin Chem Lab Med. 2020 Oct 13;59(4):e129-e132.

REFERENCE PROVIDER contribution to the MU budget (u_{ref}**)**

The MU of the current IVD measuring systems has almost no possibility to fulfil APS for the total MU budget on clinical samples, regardless of the higher-order reference selected.

To this regard, it would be interesting to determine whether the use of a RMP based on the ion chromatography principle may improve the associated MU and permit the MU for chloride to get close to the APS as already observed for other plasma/serum ions.

Pasqualetti S, Chibireva M, Borrillo F, Braga F, Panteghini M. Improving measurement uncertainty of plasma electrolytes: a complex but not impossible task. Clin Chem Lab Med. 2020 Oct 13;59(4):e129-e132.

REFERENCE PROVIDER contribution to the MU budget (u_{ref})

IVD manufacturers should not only direct their efforts on improving instrument performance but operate to reduce as much as possible u_{ref} (and consequently u_{cal}) especially when APS are stringent.

COMMERCIAL CALIBRATOR contribution to the MU budget (u_{cal}**)**

COMMERCIAL CALIBRATOR contribution to the MU budget (u_{cal}**)**

Bianchi G, Colombo G, Pasqualetti S, Panteghini M. Alignment of the new generation of Abbott Alinity γ -glutamyltransferase assay to the IFCC reference measurement system should be improved. Clin Chem Lab Med. 2022 Aug 9;60(10):e228-e231.

ICTLM PICOLAUS COPERNICUS UNIVERSITY IN TORUN Faculty of Pharmacy Collegium Medicum in Bydgoszc.

UNIVERSITY

COMMERCIAL CALIBRATOR contribution to the MU budget (u_{cal}**)**

Bianchi G, Colombo G, Pasqualetti S, Panteghini M. Alignment of the new generation of Abbott Alinity γ -glutamyltransferase assay to the IFCC reference measurement system should be improved. Clin Chem Lab Med. 2022 Aug 9;60(10):e228-e231.

NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ Faculty of Pharmacy Collegium Medicum in Bydgoszcz

RESEARCH

UNIVERSITY

ICTLM

COMMERCIAL CALIBRATOR contribution to the MU budget (u_{cal}**)**

COMMERCIAL CALIBRATOR contribution to the MU budget (u_{cal}**)**

VS

Schumann G. et al. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzyme at 37 degrees C. Part 6 Reference procedure for measurement of catalytic concentration of gammaglutamyltransferase. Clin Chem Lab Med 2002; 40:734-8.

Consolidated Chemistry Calibrator (ConCC)

Bianchi G, Colombo G, Pasqualetti S, Panteghini M. Alignment of the new generation of Abbott Alinity γ-glutamyltransferase assay to the IFCC reference measurement system should be improved. Clin Chem Lab Med. 2022 Aug 9;60(10):e228-e231.

NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ Faculty of Pharmacy

Collegium Medicum in Bydgoszc

TLM

COMMERCIAL CALIBRATOR contribution to the MU budget (u_{cal}**)**

"The presence of a positive proportional bias when GGT2 is employed may denote some problems in the ConCC value-assignment protocol used for transferring trueness from higherorder references to ConCC"

COMMERCIAL CALIBRATOR contribution to the MU budget (u_{cal})

IVD manufacturers should implement a trueness transfer process (from higher-order reference to system calibrator) suitable for providing unbiased results by their measuring systems and therefore makes the contribution of systematic bias to the total MU negligible.

UNCERTAINTY FOR CLINICAL LABORATORIES (u_{Rw})

System imprecision

Individual lab performance

- Reagent lot variability
- Calibrator lot variability
- Reagent/Calibration stability
- -----,
- Measuring equipment

- Environmental conditions
- Different operators
- Instrument maintenance
- Material preparation

u_{Rw} gives information about the
 stability of the measuring system over
 time and its variability when
 employed by an individual laboratory

NICOLAUS COPERNICUS

UNIVERSITY IN TORUŃ Faculty of Pharmacy Collegium Medicum in Bydgo

ICTLM

Testing MU due to the random effects (uRw): using the IQC component II

INTERNAL QUALITY CONTROL (IQC)

- 1. Provide that the measuring system is running properly and is correctly aligned, through IQC component I data;
- 2. Run IQC component II material randomly inside the routine analytical run (mimicking analytical conditions of clinical samples);
- Repeat measurements at least daily for a period (e.g. 6 consecutive months) sufficient to capture most changes in measuring conditions and systematic sources of measurement uncertainty;

aculty of Pha

- 4. Do not include gross outliers in the u_{pw} estimate, but check the measuring system performance and explain the outlier result;
- At the end of the evaluation period, collect all results and revise the data (exclude explainable outliers, separate data obtained with different lots of control materials, etc.);
- 6. Calculate mean and SD of replicates;
- 7. Calculate relative u_{RW} as SD/mean \times 100

Braga, Federica, Pasqualetti, Sara, Aloisio, Elena and Panteghini, Mauro. "The internal quality control in the traceability era" Clinical Chemistry and Laboratory Medicine (CCLM), vol. 59, no. 2, 2021, pp. 291-300

UNCERTAINTY FOR CLINICAL LABORATORIES (u_{Rw})

... about the stability of the measuring system over time

Meaurement uncertainty of thyroid function tests on the Abbott Alinity i platform.

		Alinity i08 Alinity i09					Between platforms				on clinical samples ^a				
	u _{cal}	n ^b	Mean	u _{Rw}	u _{result}	n ^b	Mean	u _{Rw}	u _{result}	n ^b	Mean	u _{Rw}	u _{result}	Desirable quality	Minimum quality
TSH	1.20% ^d	205	14.1 mU/L	5.24%	5.38%	218	13.9 mU/L	3.79%	3.98%	423	14.0 mU/L	4.62%	4.77%	2.89%	4.34%
fT3	1.50% ^e	210	14.3 pmol/L	5.79%	5.99%	202	14.3 pmol/L	4.09%	4.36%	412	14.3 pmol/L	5.02%	5.24%	2.35%	3.53%
fT4	0.89% ^f	168	29.5 pmol/L	5.09%	5.17%	162	30.0 pmol/L	4.80%	4.88%	330	29.8 pmol/L	5.01%	5.09%	2.80%	4.20%

*Manufacturer did not provide the MU corresponding to the employed higher-order references

According to the ISO/TS 20914:2019 for MU estimation, the main contributor of MU for thyroid function tests on Abbott Alinity assays is u_{Rw}

It is expected that Manufacturer should improve the performance of thyroid function tests on the Alinity i in term of random variability to fulfil clinically suitable APS

Borrillo F, Pasqualetti S, Panteghini M. Measurement Uncertainty of Thyroid Function Tests on a Chemiluminescent Microparticle Immunoassay System Needs to Be Improved. J Appl Lab Med. 2023 Mar 6;8(2):420-422

UNCERTAINTY FOR CLINICAL LABORATORIES (u_{Rw})

It is expected that individual laboratory should critically review the data during/at the end of the evaluation period. Medium/long term evaluation is necessary in order to account for most sources of analytical variation.

CONCLUSION

MU is not a finding to be calculated only to fulfil accreditation but must become a Key Quality Indicator to be used to give objective information describe the performance of an IVD measuring system and the laboratory itself

... in the Standardization Process

Reference provider

IVD Manufacturer

Medical laboratory

- MU gives information about the suitability of metrological traceability chain selected by the IVD manufacturer for implementing traceability of measuring system
- MU may establish if the manufacturers' specifications to validate the calibrator traceability to the selected reference system are enough for the intended use
- MU in clinical laboratories allows the identification of random components of measurement error which may affect the reliability of standardization process

... Together with the MU, valid APS must be define to validate it!

THANK YOU FOR ATTENTION

F. Borrillo Clinical Pathology Unit, ASST Fatebenefratelli-Sacco, Milan, Italy

